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Abstract

Combinatorics is a branch of mathematics strongly related to computer science, with a very
prominent role in school curricula. In order to develop the “combinatorial thinking” of students,
it is important to provide them with detailed demonstrations of fundamental theorems and results
in this area, so that they can get a “feel” of combinatorics. With this in mind, we provide an
algorithmic solution for a given combinatorial problem, the avoiding factors problem, with a
detailed demonstration, at the level of an undergraduate student. A website has been published
with the aim of letting students experiment with an implementation of our solution, enabling them
to verify their own work.

1 Introduction
In this work we deal with combinatorics, a branch of mathematics that studies discrete objects, which
is considered to be foundational in computer science [7]. It can be defined as the study of ways to
list and arrange elements of discrete sets according to specified rules [4]. Combinatorics in words
is a subfield of combinatorics applied to words and formal languages, and it’s of great importance
for theoretical computer science. Furthermore, it has led to basic algorithms for text processing and
bioinformatics, among others.

∗This work has been partially supported by the SESAME project, number TIN2008-06582-C03-03, of the MICINN,
Spain.
†Supported by FCT, POCI (EC fund FEDER) through CEOC



The Electronic Journal of Mathematics and Technology, Volume 4, Number 3, ISSN 1933-2823

Due to the importance of this area for computer science, it is being given an increasingly promi-
nent role in school curricula in recent years. From the teacher’s point of view, it is desirable to
provide strategies that help students not only to develop their combinatorial thinking, but also to elab-
orate strategies to let them verify their solutions to the proposed combinatorics problems. One way
to develop their combinatorial understanding is to offer them examples of solutions to several prob-
lems, following a ’learn-by-example’-approach. Through the study of these examples, the student
will become familiar with the elementary steps that make up complex formal demonstrations in this
field.

In this work we propose a relatively well-known problem, and give a new solution for it, developed
by the authors. The demonstration is elaborated in a very detailed way, making it possible for students
with little background to follow and understand it, and acquiring abilities to follow and elaborate
similar solutions.

Additionally, we provide a computer implementation of the solution, with the aim of assisting
them to verify their solution with the help of a computer. This implementation is published under the
GNU GPL license, meaning that they are free to modify and distribute it.

2 Informal Definition of the problem
Given a factor (a short string), a typical task is to find its occurrence in a much longer string (a text)
using a string search algorithm. Several combinatorics problems can be formulated in relation to this
task, such as counting the number of words on a finite alphabet so that a finite set of factors is avoided.
The solution to this problem lets us estimate the spatial growth of the data structures involved, and can
be used to adjust heuristics for avoiding memory overflow. This relatively simple problem has been
widely studied, and quite a few solutions have appeared in the literature.The best known solution can
be found in the work of Guibas and Odlyzko [6].

Let’s give a simple example to illustrate the problem, to be found in Tanya Khovanonova’s Web
page1

Proposition 1. The number of words of length n in the alphabet {1, 2 . . . , d} avoiding words with
“12” as substring is equal to a(n), a recursive sequence with initial terms a(0) = 1, a(1) = d and
recurrence relation

a(n) = d× a(n− 1)− a(n− 2) (1)

Proof. Let us denote b(n) (correspondingly c(n)) to the number of words in this sequence of length
n that end (correspondingly that do not end) in 1. Hence a(n) = b(n) + c(n).

You can see that b(n) = a(n − 1) since we can obtain a valid word ending in 1 by attaching 1 to
any valid word.

We can obtain a word not ending in 1 by attaching any digit other than 1 and 2 to any valid word, or
by attaching 2 to any valid word not ending in 1. Hence c(n) = (d−2)×a(n−1)+c(n−1). Now we
can replace c(n−1) as a(n−1)−b(n−1), which give us c(n) = (d−2)×a(n−1)−a(n−1)−b(n−1) =
(d− 1)× a(n− 1)− b(n− 1).

Adding b and c we obtain a(n) = (d− 1)× a(n− 1)− a(n− 2).

1http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html
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The sequences generated by this equation can be found in [10]. The first terms of this recurrence
for d = 3 are 1, 3, 8, 21, 55, 144, 377, 987, . . . (A001906)

Such a solution shows, step by step, the reasoning processes involved in a typical demonstration
of a theorem on string combinatorics, and can help novel students to become familiar with this sort of
demonstrations, as well as with some useful results in this field.

3 The avoiding factor problem

Notations and Basic Concepts
Let Σ be a finite set of characters (or symbols) called alphabet. A string (or word) over Σ is a sequence
of characters of Σ. The length of a string w is the number of its characters and is denoted |w|. The
characters of w are indexed from 1 to |w|, the i-th character of w is denoted wi. A string can also have
length 0. The empty string is denoted ε (|ε| = 0). A substring, prefix or suffix of a string is a subset of
the characters in w, where the order of the elements is preserved. Let w = w1 . . . w|n| be a string of
length n. A substring of w is a string e = wi+1 . . . wi+|e|, where i ≥ 0 and i+ |e| ≤ n. Otherwise, we
say that e avoid as substring w and denote it as e 6v w. A prefix of w is a string p = w1 . . . w|p|, where
|p| ≤ n. If 0 < |p| < n we call p a proper prefix of a word w, that is, a proper prefix is not equal to
the string itself and is not empty. A suffix of w is a string s = wn−|s|+1 . . . w|w|, where |s| ≤ n. Given
two strings x and y over Σ, the concatenation of x and y is the string xy obtained by appending y at
the end of x. Σ∗ is the set of all words over Σ. Σn is the set of all words over Σ that have length n.
Σ+ is the set of all words over Σ that have length ≥ 1. By language misuse σ will be used as both
symbol and word.

The Problem
Consider the problem of determining the number of words in Σn that avoid a set of factors. Let
E ⊂ Σ · Σ+ be the set of avoided factors.

Definition 2. Given an alphabet Σ and a subset of non overlapped avoidable factorsE, the avoidance
factor problem aE(n) is defined as the number of words of length n over the alphabet Σ that avoid as
substring every word in E, that is

aE : N → N
n → aE(n) = |Wn|

(2)

Wn = {w ∈ Σn : ∀e [e ∈ E → e 6v w]} (3)

Remark 3. We call E the set of avoiding factors. Non overlapped means that the words in the set E
have the following property: ∀w∀y [w, y ∈ E → (w 6v y ∧ y 6v w)]

Remark 4. We call Wn the set of valid words of length n

Example 5. Suppose Σ = {0, 1} and E = {00, 010}. The values of aE(n) for n = 0, 1, 2, 3 are
aE(0) = 0, aE(1) = 2, aE(2) = 3 and aE(3) = 4.

Figure 1 depicts a partial tree structure to represent the words in {Wn : n ∈ N} of the Example 5
where each level d represents the set Wd.
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aE(0) = 0
Σ0 W0

∅ ∅

aE(1) = 2
Σ1 W1

0 0
1 1

aE(2) = 3
Σ2 W2

00 -
01 01
10 10
11 11

aE(3) = 4
Σ3 W3

000 -
001 -
010 -
011 011
100 -
101 101
110 110
111 111

Table 1: Some values for aE(n)

ε

0

1

1

1

0

1

1

0 1

...
...

...
...

Figure 1: Tree for E = {00, 010}

4 A solution for the avoidance factor problem
In this section, we present our solution for the avoidance factor problem. It should be noted that other
solutions have been previously proposed in the literature [6]. Similar to ours, but a more straightfor-
ward solution can be obtained using the Knuth-Morris-Pratt factor searching algorithm in its extended
form, generating a finite state automaton whose rejecting paths represent those strings that avoid the
factors. The length of these paths can be counted by length using the standard transfer matrix method-
ology. The recurrences used in our solution would represent the allowed transitions from and between
states.

Nevertheless, such a demonstration would involve mathematical techniques that, generally, cannot
be assumed to be known by students. That is why we propose our solution, more appropiated to the
level of an undergraduate computer science student, although somehow more indirect.

Before we start the formal exposition that follows, we want to give the main ideas of the proposed

254



The Electronic Journal of Mathematics and Technology, Volume 4, Number 3, ISSN 1933-2823

solution in order to allow the reader to better understand the key concepts and methods involved in
the derived results. Given a set of elements, it is often useful to partition them into a number of
separate, non overlapping (disjoint) sets. The rationale of our solution is to choose a suitable partition
of the set of valid words so that the problem of counting the number of valid words that avoid a set
of factors can be reduced to the problem of determining the cardinality of each disjoint partition. For
this purpose, the proof is divided into two steps. In the first step we will show that the minimal set of
proper prefixes of words in the set of avoiding factors let us find a good partition of the set of valid
words. We will prove that the set of valid words can be decomposed into the set of valid words ending
in a proper prefix of avoiding factors and the set of valid words not ending in them. In the second
step we introduce another kind of set, called linking sets, and will use it to determine the cardinality
of the valid-prefix by using concatenation over sets. The general solution is described as a recurrence
relation system.

4.1 Partitioning the set of valid words into disjoint sets
Let Wn be a set of valid words of length n, E a set of avoiding factors and p(E) the minimal set of
proper prefixes of words in E.

Definition 6. A ε-valid-prefix set Xε
n ⊂ Wn is the subset of valid words in Wn that not ending in a

proper prefix of a word in E, that is,

Xε
n =

{
w
∣∣ w ∈ Wn ∧ ∀x∀t ∈ Σ+ [w = xt→ t /∈ p(E)]

}
(4)

Definition 7. A t-valid-prefix setX t
n ⊂ Wn is the subset of valid words in Wn ending in t with t being

the bigger suffix that is a proper prefix in p(E), that is,

X t
n =

{
w
∣∣ w ∈ Wn ∧ ∃x : w = xt ∧ t ∈ p(E) ∧
∀x∀y ∈ Σ+ [w = xyt→ yt /∈ p(E)]

} (5)

Definition 8. A valid-prefix set XT
n is the union of the t-valid-prefix sets, that is, XT

n =
⋃
t∈p(E)X

t
n

Example 9. Let E = {00, 010} be the set of avoiding factors in Example 5. Then for n = 3 we
have W3 = {011, 101, 110, 111} (see Table 1). The set of proper prefixes p(E) = {0, 01} defines two
t-valid-prefix sets X0

3 and X01
3 . Then due to the above definitions Xε

3 = {011, 111}, X0
3 = {110},

X01
3 = {101} and XT

3 =
⋃
t∈p(E) = {110, 101}. Note that X0

3 ∩ X01
3 = ∅ and Xε

3 ∩ XT
3 = ∅. As

a result W3 can be decomposed into two disjoint (on the union) sets, that is, W3 = Xε
3 ∪ XT

3 with
Xε

3 ∩XT
3 = ∅.

Lemma 10. The union of the sets Xε
n and XT

n is Wn, that is, Wn = Xε
n ∪XT

n

Proof. By the definition of union of sets we must prove that for every w, w ∈ Wn if and only if,
w ∈ Xε

n∨w ∈ XT
n . To do this we must first prove that for everyw, ifw ∈ Wn thenw ∈ Xε

n∨w ∈ XT
n .

We proceed by contradiction. Suppose that there exists w ∈ Wn such that w /∈ Xε
n ∧ w /∈ XT

n . We
consider two cases:

Case 1:if w /∈ Xε
n, then by Definition 6 ∃ t ∈ Σ+ such that if w = xt then t ∈ p(E). By

Definition 7 and Definition 8 it follows that w ∈ XT
n , which is a contradiction.
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Case 2: if w /∈ X t
n, then by Definition 7 it follows that t /∈ p(E) ∨ ∃x∃y ∈ Σ+ : (w = xyt ∧

yt ∈ p(E)). This implies w ∈ Xε
n ∨ w ∈ Xu

n with u 6= t. This is also a contradiction
In the other direction, suppose that for everyw, w ∈ Xε

n∨w ∈ XT
n . Since we know thatXε

n ⊆ Wn,
∀t X t

n ⊆ Wn, then XT
n ⊆ Wn; hence Xε

n ∪XT
n ⊆ Wn. As a result w ∈ Wn.

The above lemma can be interpreted as “The union of valid words ending in a proper prefix of E
and the valid words not ending in a proper prefix of E define the set of every possible valid words”.

Lemma 11. The intersection of the sets X t
n ∩Xu

n (t 6= u) and the intersection of the sets X t
n ∩Xε

n is
empty.

Proof. This is obvious for Xε
n. We obtain the contradiction ∀x∀t ∈ Σ+ [w = xt → t /∈ p(E)] and

t ∈ p(E).
We study the intersection for X t

n and Xu
n . We suppose w ∈ X t

n and w ∈ Xu
n . Then, t = vu∨ u =

vt, with v 6= ε. In both cases we have a contradiction for the condition in (5): ∀x∀y ∈ Σ+ [w =
xyt→ yt /∈ p(E)] with y = v

Note: This is simple for words ending or not ending in a prefix of E. For the second case, inter-
section between sets t and u, each valid word belongs to the set determined by the words in E which
have bigger overlapping.

After having found a suitable partition of the set of valid words we can use the cardinality of the
partitions XT

n and Xε
n to count the total number of valid words avoiding the set of factors E.

Lemma 12. aE(n) is equal to the sum of the cardinality of the set Xε
n and the cardinality of the set

XT
n , that is.

aE(n) = |Xε
n|+ |XT

n | = |Xε
n|+

∑
t

|X t
n| (6)

Proof. By the lemma 10 we know that the union of the sets Xε
n and XT

n is Wn. By the lemma 11 we
know that their intersection is empty. Hence, the cardinal of aE(n) is the sum of the cardinals of the
sets Xε

n and XT
n

4.2 Determining the cardinality of the valid-prefix sets
To determine the cardinality of the valid prefix sets Xε

n and XT
n let us introduce the linking sets C�

�

where the superindex can be a symbol or a word and the subindex is a word.

Definition 13. Let σ ∈ Σ. The linking set Cσ
ε is a set with a symbol σ if this symbol is a proper prefix

in E. Otherwise Cσ
ε is an empty set.

Cσ
ε =

{
σ
∣∣ σ ∈ Σ, σ ∈ p(E)

}
(7)

Definition 14. Let u, and t be proper prefixes in E, with u 6= t. The linking set Ct
u is a set with one

symbol σ if t is the bigger suffix for uσ that is a proper prefix in E. Otherwise the set is empty. That
is,

Ct
u =

{
σ
∣∣ σ ∈ Σ, u ∈ p(E), t ∈ p(E), ∃s : uσ = st,

∀v∀w ∈ Σ+ [uσ = vwt → wt /∈ p(E)]
} (8)
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Definition 15. Let t be a proper prefix in E. The linking set Cε
t is the set of symbols σ such that any

suffix of tσ is not a prefix in E, that is,

Cε
t =

{
σ
∣∣ σ ∈ Σ, t ∈ p(E), tσ /∈ E,
∀x∀y [tσ = xyσ → yσ /∈ p(E)]

} (9)

Definition 16. The linking set Cε
ε is the set of symbols that are not a proper prefix in E, that is

Cε
ε =

{
σ
∣∣ σ ∈ Σ, σ /∈ p(E)

}
(10)

Example 17. Let E = {00, 010} be the set of avoiding factors in Example 5 and p(E) = {0, 01}
the set of proper prefixes of Example 9. Then we have the linking sets C0

ε = {0}, Cε
0 = ∅, C0

0 = ∅,
C01

0 = {1}, Cε
01 = {1}, C0

01 = ∅, C01
01 = ∅ and Cε

ε = {1}
In the next lemmas we show that if we concatenate valid-prefix sets of length n with the linking

sets we get valid-prefix sets of length n+ 1.

Lemma 18. ∀u∀t [u, t ∈ p(E) → Xu
n · Ct

u ⊆ X t
n+1].

Proof. We show that ∀w∀σ [w ∈ Xu
n ∧ σ ∈ Ct

u → wσ ∈ X t
n+1].

From w ∈ Xu
n ≡ w ∈ Wn, ∃x : w = xu, u ∈ p(E),

∀x∀y ∈ Σ+ [w = xyu→ yu /∈ p(E)]

and σ ∈ Ct
u ≡ σ ∈ Σ, u ∈ p(E), t ∈ p(E), ∃s : uσ = st,

∀v∀ẇ ∈ Σ+ [uσ = vẇt → ẇt /∈ p(E)]

we will obtain =⇒ wσ ∈ X t
n+1 ≡

wσ ∈ Wn+1, ∃ẋ : wσ = ẋt, t ∈ p(E),

∀ẋ∀ẏ ∈ Σ+ [wσ = ẋẏt→ ẏt /∈ p(E)]

We prove the implication for each term of the consequent.

• ∃ẋ : wσ = ẋt. We know that w = xu and ∃s : uσ = st, hence wσ = xuσ = xst = ẋt with
ẋ = xs.

• t ∈ p(E). By definition of Ct
u we know that this condition is true.

• ∀ẋ∀ẏ ∈ Σ+ [wσ = ẋẏt→ ẏt /∈ p(E)]. We know that

ẇt /∈ p(E) (11)

and
yvẇt /∈ p(E) (12)

Furthermore, wσ = xyvẇt and wσ = ẋẏt. Since ẏ ∈ Σ+ and y, ẇ ∈ Σ+ the limit cases are

ẏ = ẇ → ẋ = xyv (13)

and
ẏ = yvẇ → ẋ = x (14)

In case (13) we must consider (11) then ẏt /∈ p(E). In case (14) we must consider (12), so
ẏt /∈ p(E). Hence, in every case ẏt /∈ p(E).
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• wσ ∈ Wn+1. We know that w ∈ Wn. By the implication defined previously, we know that wσ
does not have a suffix that is also a word in E. Hence wσ ∈ Wn+1.

Lemma 19. Xε
n · Cσ

ε ⊆ Xσ
n+1.

Proof. We prove that ∀w∀σ [w ∈ Xε
n ∧ σ ∈ Cσ

ε → wσ ∈ Xσ
n+1].

From w ∈ Xε
n ≡ w ∈ Wn,

∀x∀t ∈ Σ+ [w = xt → t /∈ p(E)]

and σ ∈ Cσ
ε ≡ σ ∈ Σ, σ ∈ p(E)

we will obtain =⇒ wσ ∈ Xσ
n+1 ≡
wσ ∈ Wn+1, ∃ẋ : wσ = ẋσ, σ ∈ p(E),

∀ẋ∀ẏ ∈ Σ+ [wσ = ẋẏσ → ẏσ /∈ p(E)]

And prove the implication for each component of the consequent.

• wσ = ẋσ with ẋ = w.

• σ ∈ p(E). By definition of Cσ
ε .

• ∀ẋ∀ẏ ∈ Σ+ [wσ = ẋẏσ → ẏσ /∈ p(E)]. We have that ∀x∀t ∈ Σ+ [w = xt → t /∈ p(E)], that
imply wσ = ẋẏσ → ẏσ /∈ p(E) for ẋ = x and ẏ = t.

• wσ ∈ Wn+1. We know that w ∈ Wn. By the above implication we know that wσ does not have
a prefix that is a word of E. Hence, wσ is a valid word.

Lemma 20. ∀t [t ∈ p(E) → X t
n · Cε

t ⊆ Xε
n+1].

Proof. We analyze that ∀w∀σ [w ∈ X t
n ∧ σ ∈ Cε

t → wσ ∈ Xε
n+1].

From w ∈ X t
n ≡ w ∈ Wn, ∃x : w = xt, t ∈ p(E),

∀x∀y ∈ Σ+ [w = xyt→ yt /∈ p(E)]

and σ ∈ Cε
t ≡ σ ∈ Σ, t ∈ p(E),

∀x∀y [tσ = xyσ → yσ /∈ p(E)]

we can conclude =⇒ wσ ∈ Xε
n+1 ≡ wσ ∈ Wn+1

∀ẋ∀ṫ ∈ Σ+ [wσ = ẋṫ → ṫ /∈ p(E)]

We prove each component of the consequent.

• ∀ẋ∀ṫ ∈ Σ+ [wσ = ẋṫ → ṫ /∈ p(E)]. Beginning from ∀x∀y ∈ Σ+ [w = xyt→ yt /∈ p(E)] can
be implied that ∀x∀y ∈ Σ+ [wσ = xytσ → ytσ /∈ p(E)]. Moreover, we know that ∀x∀y [tσ =
xyσ → yσ /∈ p(E)]. Hence, we have the implication for ∀ẋ∀ṫ ∈ Σ+ [wσ = ẋṫ→ ṫ /∈ p(E)].
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• wσ ∈ Wn+1. We know that w is a valid word and by the above result we know that wσ does
not have a suffix which is a word in E. Hence, wσ is a valid word.

Lemma 21. Xε
n · Cε

ε ⊆ Xε
n+1.

Proof. We study that ∀w∀σ [w ∈ Xε
n ∧ σ ∈ Cε

ε → wσ ∈ Xε
n+1].

From w ∈ Xε
n ≡ w ∈ Wn,

∀x∀t ∈ Σ+ [w = xt → t /∈ p(E)]

and σ ∈ Cε
ε ≡ σ ∈ Σ, σ /∈ p(E)

we can conclude =⇒ wσ ∈ Xε
n+1 ≡ wσ ∈ Wn+1,

∀ẋ∀ṫ ∈ Σ+ [wσ = ẋṫ → ṫ /∈ p(E)]

We prove it for each term of the consequent:

• Let us see that ∀ẋ∀ṫ ∈ Σ+ [wσ = ẋṫ → ṫ /∈ p(E)].

By beginning with ∀x∀t ∈ Σ+ [w = xt → t /∈ p(E)] we obtain that ∀x∀t ∈ Σ+ [wσ =
xtσ → tσ /∈ p(E). Also, we know that σ /∈ p(E). Hence, we have that ∀ẋ∀ṫ ∈ Σ+ [wσ =
xṫ→ ṫ /∈ p(E)].

• wσ ∈ Wn+1. We know that w ∈ Wn. Also we know that w = xt→ t /∈ p(E), we say, w does
not have a suffix belonging to p(E). Hence wσ is a valid word.

Now, we will show a reverse version of the previous lemmas: if two words belong to consecutive
valid-prefix sets and they are equal except for the last symbol, then that symbol is in the corresponding
linking set.

Lemma 22. wσ ∈ X t
n+1 ∧ w ∈ Xu

n → σ ∈ Ct
u.

Proof. We show that

from wσ ∈ X t
n+1 ≡ wσ ∈ Wn+1, ∃x : wσ = xt, t ∈ p(E),

∀x∀y ∈ Σ+ [wσ = xyt→ yt /∈ p(E)]

and w ∈ Xu
n ≡ w ∈ Wn, ∃y : w = yu, u ∈ p(E),

∀x∀y ∈ Σ+ [w = xyu→ yu /∈ p(E)]

we can conclude =⇒ σ ∈ Ct
u ≡
σ ∈ Σ, u ∈ p(E), t ∈ p(E), ∃ṡ : uσ = ṡt,

∀v̇∀ẇ ∈ Σ+ : [uσ = v̇ẇt → ẇt /∈ p(E)]

We prove the implication for each component in the consequent.

• σ ∈ Σ. It is implied by |wσ| = n+ 1 and |w| = n.
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• u ∈ p(E). There is the same component in the antecedent.

• t ∈ p(E). There is the same component in the antecedent.

• ∃ṡ : uσ = ṡt. We know that t is a suffix of wσ and that u is a suffix of w. Also, we
know that u is the bigger suffix of w that is a proper prefix of a word of E, by u ∈ p(E) and
∀x∀y ∈ Σ+ : w = xyu→ yu /∈ p(E). Last, t is the bigger suffix of wσ that is a proper prefix
of a word of E. Hence t is a suffix of uσ.

• ∀v̇∀ẇ ∈ Σ+ [uσ = v̇ẇt → ẇt /∈ p(E)]. By the above item, we know that t is a suffix of uσ.
Also, we know that t is the biggest suffix of wσ = xuσ that is a proper prefix of a word of E.
Hence, t is the bigger suffix for the substring uσ of wσ which is a proper prefix of a word of E.

Lemma 23. wσ ∈ Xσ
n+1 ∧ w ∈ Xε

n → σ ∈ Cσ
ε .

Proof. We show that

from wσ ∈ Xσ
n+1 ≡ wσ ∈ Wn+1, ∃x : wσ = xσ, σ ∈ p(E),

∀x∀y ∈ Σ+ [wσ = xyσ → yσ /∈ p(E)]

and w ∈ Xε
n ≡ w ∈ Wn,

∀x∀t ∈ Σ+ [w = xt → t /∈ p(E)]

we can conclude =⇒ σ ∈ Cσ
ε ≡ σ ∈ Σ, σ ∈ p(E)

We prove the implication for each component in the consequent.

• σ ∈ Σ. This is similar to the proof in the lemma 22.

• σ ∈ p(E). This term is also in the antecedent.

Lemma 24. wσ ∈ Xε
n+1 ∧ w ∈ X t

n → σ ∈ Cε
t .

Proof. We show that

from wσ ∈ Xε
n+1 ≡ wσ ∈ Wn+1,

∀x∀u ∈ Σ+ [wσ = xu → u /∈ p(E)]

and w ∈ X t
n ≡ w ∈ Wn, ∃x : w = xt, t ∈ p(E),

∀x∀y ∈ Σ+ [w = xyt→ yt /∈ p(E)]

we can conclude =⇒ σ ∈ Cε
t ≡ σ ∈ Σ, t ∈ p(E),

∀ẋ∀ẏ [tσ = ẋẏσ → ẏσ /∈ p(E)]

We prove the implication for each component of the consequent.

• σ ∈ Σ. It is similar to the proof in the lemma 22.
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• t ∈ p(E). This term is also in the antecedent

• ∀ẋ∀ẏ [tσ = ẋẏσ → ẏσ /∈ p(E)]. We know that every suffix of wσ does not is a proper prefix
of a word of E, ∀x∀u ∈ Σ+ [wσ = xu → u /∈ p(E)]. Also, we know that ∃x : w = xt,
which imply wσ = xtσ. Hence, every suffix of tσ does not is a proper prefix of any word of E.

Lemma 25. wσ ∈ Xε
n+1 ∧ w ∈ Xε

n → σ ∈ Cε
ε .

Proof. We show that

from wσ ∈ Xε
n+1 ≡ wσ ∈ Wn+1,

∀x∀t ∈ Σ+ [wσ = xt → t /∈ p(E)]

and w ∈ Xε
n ≡ w ∈ Wn, ∀x∀t ∈ Σ+ [w = xt → t /∈ p(E)]

we can conclude =⇒ σ ∈ Cε
ε ≡ σ ∈ Σ, σ /∈ p(E)

We prove the implication for each term of the consequent.

• σ ∈ Σ. This is similar to the proof in the lemma 22.

• σ /∈ p(E). This is a simple case of ∀x∀t ∈ Σ+ [wσ = xt → t /∈ p(E)] with t = σ.

The following two lemmas show the inductive relation that exists between two consecutive valid-
prefix sets.

Lemma 26. Let wσ be a word in X t
n+1. Then w belongs to the concatenation of Xu

n and Ct
u or

belongs to the concatenation of Xε
n and Ct

ε . That is,

wσ ∈ X t
n+1 → ∃u : wσ ∈ Xu

n · Ct
u ∨ wσ ∈ Xε

n · Ct
ε

Proof. By definition, we know that wσ ∈ X t
n+1 implying that w ∈ Wn. By Lemma 10 we know that

w ∈ Xu
n ∨ w ∈ Xε

n. Hence, we can reduce the antecedent to wσ ∈ X t
n+1 ∧ w ∈ Xu

n → σ ∈ Ct
u and

wσ ∈ X t
n+1 ∧ w ∈ Xε

n → σ ∈ Ct
ε . We analyze both options.

• wσ ∈ X t
n+1 ∧ w ∈ Xu

n → σ ∈ Ct
u. It is proved in the lemma 22

• wσ ∈ X t
n+1 ∧ w ∈ Xε

n → σ ∈ Ct
ε . It is proved in the lemma 23

Lemma 27. Let wσ be a word in Xε
n+1. Then wσ belongs to the concatenation of Xu

n and Cε
u or

belongs to the concatenation of Xε
n and Cε

ε . That is,

wσ ∈ Xε
n+1 → ∃u : wσ ∈ Xu

n · Cε
u ∨ wσ ∈ Xε

n · Cε
ε

Proof. By applying the same ideas as in the previous lemma, we study two options.
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• wσ ∈ Xε
n+1 ∧ w ∈ X t

n → σ ∈ Cε
t . It is proved in the lemma 24

• wσ ∈ Xε
n+1 ∧ w ∈ Xε

n → σ ∈ Cε
ε . It is proved in the lemma 25

Lemma 28.

X t
n+1 = Xε

n · Ct
ε ∪u Xu

n · Ct
u

Xε
n+1 = Xε

n · Cε
ε ∪u Xu

n · Cε
u

Proof. It is necessary to prove the double implication ∀w, σ ∈ Σ∗ : wσ ∈ X t
n+1 ↔ w ∈ ∪uXu

n ·
Ct
u ∨ σ ∈ Xε

n · Ct
ε . This is proved by the lemmas 18, 19 and 26.

In the second case, we have to prove the double implication ∀w, σ ∈ Σ∗ : wσ ∈ Xε
n+1 ↔ w ∈

∪uXu
n · Cε

u ∨ σ ∈ Xε
n · Cε

ε . This is proved by the lemmas 20, 21 and 27.

Lemma 29.

Xu
n · Ct

u ∩Xr
n · Ct

r = ∅
Xu
n · Cσ

u ∩Xε
n · Cσ

ε = ∅
Xu
n · Cε

u ∩Xr
n · Cε

r = ∅
Xu
n · Cε

u ∩Xε
n · Cε

ε = ∅

Proof. We know that X t
n ∩Xu

n = ∅, with t 6= u, and X t
n ∩Xε

n = ∅. Hence, the concatenation of the
proposed sets are empty because the prefixes of the words are always different.

The inductive relation between two consecutive valid-prefix sets shown in Lemmas 26 and 27 and
the partition shown in Lemmas 28 and 29 drive us to the central result of this paper.

Theorem 30. The cardinal of a valid-prefix set Xn+1 is equal to the sum of the cardinals of the
valid-prefix sets Xn that compound it.

|X t
n+1| =

∑
u

|Xu
n · Ct

u|+ |Xε
n · Ct

ε| (15)

|Xε
n+1| =

∑
u

|Xu
n · Cε

u|+ |Xε
n · Cε

ε | (16)

Proof. The union is proved by the lemma 28, and we have proved in lemma 29 that the intersection
of the sets is empty. Hence, the cardinal is the sum of the cardinals of the sets.

Example 31. LetE = {00, 010} the set of avoiding factors in Example 5, valid-prefix sets in Example
9 and linking sets in Example 17. Then we obtain the recurrence relation system

|Xε
n+1| = |Xε

n| × |Cε
ε |+ |X01

n | × |Cε
01| = |Xε

n|+ |X01
n |

|X0
n+1| = |Xε

n| × |C0
ε | = |Xε

n|
|X01

n+1| = |X0
n| × |C01

0 | = |X0
n|

with initial terms |Xε
2| = 1, |X0

2 | = 1 and |X01
2 | = 1.
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Figure 2: Screenshot of the application configuration for Example 33

Corollary 32. The number of words avoiding a set of factors aE(n) can be calculated by counting
the cardinal of valid-prefix sets and the cardinal of the linking sets.

Proof. By the lemma 12 and the theorem 30.

Example 33. Let E = {00, 010} be the set of avoiding factors in Example 5, valid-prefix sets in
Example 9, linking sets in Example 17 and recurrence relation system in Example 31. Then we have

aE(n+ 1) = |Xε
n+1|+ |X0

n+1|+ |X01
n+1|

with initial terms aE(0) = 1, aE(1) = 2, aE(2) = 3.
The sequence generated in this sample is aE = 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, . . .

5 Implementation
An on-line implementation of the solution presented in this paper is available at one of the author’s
web site2. This on-line tool allows students to experiment with our solution, and to verify their own
solution. The possibility to interact with the algorithmical solution is very likely to help students
to develop their understanding of combinatorics and its methods. Additionally, the source code is
available from the author’s web site under GNU GPL license, which makes it possible to integrate
our solution with other applications.

2http://iaia.lcc.uma.es/˜baena/papers/factoravoidance
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Figure 3: Screenshot of the solution proposed by the on-line application for Example 33
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Figure 4: Screenshot of the solution for the problem with the avoiding set E =
{aac, aab, aba, ba, cdc} and an alphabet with four symbols
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6 Conclusions
In this paper we provide a detailed demonstration of the solution of a given combinatorics problem, the
factors avoiding problem. This demonstration is developed at the level of an undergraduate student.
A website has been published with the aim of letting students experiment with an implementation of
our solution, enabling them to verify their own work. The source code has been published under the
GNU GPL license, letting developers integrate our solution with their own tools.
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[14] Axel Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra. Vidensk.
Selsk. Skrifter, I. Mat. Nat. Kl., 1912(1):1–67, 1912.

[15] Julian West. Generating trees and forbidden subsequences. Discrete Math., 157(1-3):363–374,
1996.

[16] Doron Zeilberger. Enumeration schemes and, more importantly, their automatic generation.
Ann. Comb., 2(2):185–195, 1998.

2000 Mathematics Subject Classification: 68R15.
Keywords: combinatorial problems, combinatorics on words, factor avoidance.

267

http://dx.doi.org/10.1016/S0012-365X(96)83023-8

	Introduction
	Informal Definition of the problem
	The avoiding factor problem
	A solution for the avoidance factor problem
	Partitioning the set of valid words into disjoint sets
	Determining the cardinality of the valid-prefix sets

	Implementation
	Conclusions

